Peak intensity measurement of relativistic lasers via nonlinear Thomson scattering
نویسندگان
چکیده
منابع مشابه
Relativistic Nonlinear Thomson Scattering: Toward Intense Attosecond Pulse
Over many millennia of human history, mankind has been interested in how events change in time, namely their dynamics. However, the time resolution of recording individual steps has been limited to direct sensory perception such as the eye’s ability (0.1 sec. or so) to recognize the motion, until 1800 AD when the technical revolution occurred following the industrial revolution. A famous motion...
متن کاملRelativistic nonlinear Thomson scattering as attosecond x-ray source.
Relativistic, nonlinear Thomson scattering by an electron of an intense laser field has been investigated by computer simulation. Under a laser field with a pulse duration of 20-fs full width at half maximum and an intensity of 10(20) W/cm(2), the motion of an electron is highly relativistic and generates an ultrashort radiation of 2 as with photon energies from 100 to 600 eV. An interesting mo...
متن کاملNonlinear Thomson scattering: A tutorial
Recent advances in table-top, ultrahigh intensity lasers have led to significant renewed interest in the classic problem of Thomson scattering. An important current application of these scattering processes is the generation of ultrashort-pulse-duration x rays. In this tutorial, the classical theory of nonlinear Thomson scattering of an electron in an intense laser field is presented. It is fou...
متن کاملPulsed-laser nonlinear Thomson scattering for general scattering geometries.
In a recent paper it has been shown that single electron Thomson backscatter calculations can be performed including the effects of pulsed high intensity lasers. In this paper we present a more detailed treatment of the problem and present results for more general scattering geometries. In particular, we present new results for 90 degrees Thomson scattering. Such geometries have been increasing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Letters
سال: 2012
ISSN: 0146-9592,1539-4794
DOI: 10.1364/ol.37.001352